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Reactivity of c-chloro-gem-trichloroalkanes with chromous chloride
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Abstract—CrCl2-mediated condensation of c-chloro-gem-trichloroalkanes with aldehyde generates homoallylic alcohols through a
hydride rearrangement followed by a Nozaki–Hiyama allylation.
� 2006 Elsevier Ltd. All rights reserved.
Organochromium reagents have emerged as versatile
synthetic intermediates due in large part to their unique
stereo-, regio- and chemo-selectivities. In the Hiyama–
Nozaki allylation, allylchromium(III) reagents, most
commonly made from allylic halides utilizing CrCl2,
have proven useful for the preparation of homoallylic
alcohols under mild conditions.1 On the other hand,
the initial dichlorochromium(III) carbenoid generated
from gem-trichlorides often undergoes further metalla-
tion to a chlorodichromium(III) species, which has
found considerable synthetic utility.2 As part of our
continuing investigation of organochromium methodol-
ogy, we report herein the preparation of homoallylic
alcohols from c-chloro-gem-trichloroalkanes with
chromous chloride in THF. The intramolecular rear-
rangement of chromium(III) c-chloro-alkylidene inter-
mediates was evidenced by isotopic labelling.
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doi:10.1016/j.tetlet.2006.05.045

Keywords: Carbene; Chromium; Nozaki–Hiyama allylation; Trichloroalkane
* Corresponding authors. E-mail addresses: j.falck@utsouthwestern.edu; mio

R1

R2

CCl3
Cl

RC
CrC

25˚C
R1

R2

2a (53 %, ant i/syn = 2:1)

2b (48 %, anti/syn = 2:1)

CCl4, Fe0

DMF, 80 ºC

1a R1, R2 = -(CH2)4-

1b R1 = R2 = n-Bu

Scheme 1. CrCl2-mediated condensation of c-chloro-gem-trichloroalkanes w
c-Halo-gem-trihaloalkanes are easily synthesized via
Kharasch addition of polyhaloalkanes to alkenes, cata-
lyzed by various metals.3 1-Chloro-2-trichloromethyl-
cyclohexane 2a was prepared from cyclohexene 1a and
tetrachloromethane in the presence of Fe(0) in 53% yield
as a mixture (2:1) of anti/syn isomers (Scheme 1).4 Puri-
fication by reversed-phase chromatography affords pure
anti-2a. 5-Chloro-6-trichloromethyldecane 2b was syn-
thesized under the same conditions in 48% yield as a
mixture (2:1) of anti/syn isomers.

The reaction of 1-chloro-2-trichloromethyl-cyclohexane
2a with chromous chloride in the presence of p-tolualde-
hyde 3 gives (E-2-chloromethylene-cyclohexyl)-p-tolyl-
methanol 4a as a mixture of diastereoisomers (70:30)
in 60% yield and 2-chloro-2-cyclohex-1-enyl-1-p-tolyl-
ethanol 5a in 3% yield (Scheme 1).5,6 Purification by
.
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Scheme 2. Proposed mechanism for the reaction of c-chloro-trichloroalkanes with chromous chloride.
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Scheme 3. CrCl2-mediated condensation of isotopic labelled c-chloro-
gem-trichloroalkanes with an aldehyde.
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silica gel chromatography afforded the isolated major
diastereoisomer 4a in 30% yield, which was character-
ized as the anti and E isomer by X-ray crystallography.7

The minor isomer 4a could not be isolated and crystal-
lized, but its E stereochemistry was determined by a
2D 1H NOE NMR. Interestingly, the reaction of pure
anti-2a or a mixture (2:1) of anti/syn-2a isomers provides
the same ratio of 4a diastereomers (70:30). Under the
same conditions, with isobutyraldehyde 3 0, 1-chloro-2-
trichloromethyl-cyclohexane 2a gives a mixture of 4b
diastereomer (60:40) in 43% yield.8 5-Chloro-6-trichloro-
methyl-decane 2b in the presence of p-tolualdehyde 3
gives homoallylic alcohols 4c in 54% yield as a mixture
(45:30:25) of stereoisomers.9

Mechanistically, the formation of 4 and 5 probably pro-
ceeds initially through addition of chromium(II) into a
C–Cl bond (Scheme 2). Formally, the oxidative addition
of Cr(II) involves two consecutive single-electron trans-
fers, thus accounting for 2 equiv of CrCl2 needed for the
reduction of one C–Cl bond.10 Next, the coordination of
the c chlorine atom to the metal most likely induces
rehybridization of the dichlorocarbenoid species 6, thus
precluding oxidative addition of CrCl2 into a second
gem-C–Cl bond.2b,11 By placing a positive charge in a
p orbital, the organochromium produces a tight ion
pair, and the formation of a carbene complex 7 is postu-
lated.12,13 An intramolecular rearrangement involving a
1,2-migration of hydride then gives the allylic chloride
intermediate 8. The hydride migration was demon-
strated by reacting 5-chloro-6-trichloro-5,6-d2-methyl-
decane 2b-d2 under the standard conditions.14 Using p-
tolualdehyde and CrCl2, the coupling adduct 4c-d2 was
obtained (Scheme 3).15

Allylic halides in the presence of CrCl2are known to give
coupling adducts with aldehydes.1 Compound 8 reacts
with chromium(II) to give the allylchromium(III)
reagents 9 and in the presence of an aldehyde, 9 adds to
the carbonyl group to furnish homoallylic alcohols 4
and 5.16 Whether allylchromium(III) species 9a(b) exists
as the g1 or g3 structure is not clear, it is likely to be g1

at least in the transition state of the reaction with carbonyl
compound. Allylic metal compounds normally react with
carbonyl compounds at the c position of the allyl metal
unit (9a! 5 and 9b! 4).17 The results suggest that the
alkyl substituents favour the metal at a-position of
chlorine to give 9b, which affords the major coupling
adduct 4. Because of the steric interaction between
ligands on chromium and the substituents on the allyl
fragment, the equilibrium lies towards the allylic
chromium species with less steric crowding of the
carbon–chromium bond.18 As equilibration between
two isomeric allylic metal compounds can occur, the
allylchromium(III) reagents 9 may also be obtained from
3,3-dichloropropene derivatives 10.19

In summary, c-chloro-gem-trichloroalkanes are precur-
sors of a,c-dichloroallyls and give homoallylic alcohols
after further Nozaki–Hiyama reaction. Interestingly,
final coupling adducts are obtained through two
organochromium intermediates, a dichloro-chromium(III)
alkane carbenoid and an allylchromium(III) species,
showing a different pattern of transformation owing to
the halide at the b position of the trichloromethyl group.
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